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1. Introduction.

As one of the authors has pointed out in [30], for the purposes of military

operations research, it is convenient to consider that there are three essential parts

of any time-sequential combat optimization problem:

(a) the decision criteria (for both combatants),

(b) the model of conflict termination (and/or unit breakpoints),

(c) the model of combat dynamics.

An important problem of military operations research is the determination of the rela-

tionship between the nature of system objectives and the structure of optimal (time-

sequential) combat strategies. Of particular importance is the sensitivity of the

structure of optimal combat strategies to the nature of military objectives. In a

time-sequential combat optimization problem the combatant objectives are quantified

through the criterion functional (see [4]). If the optimal combat strategy and asso-

ciated payoff are quite sersitive to the functional form of the criterion functional,

then care must be exercised in the selection of the functional form.

An important constituent pait of fire support is the target allocation function

which matches a specific weapon type with an acquired target within the target's

environment. 
t  

It is not surprising then that the determination of optimal target

allocation strategies for supporting weapon systems 
t
t is (in one form or another) one

of the most extensively studied problems in both the open literature (see [33] (or [34])

for further references) and also classified sources. During World War II the problem

of the appropriate mixture of tactical and strategic air forces (another aspect of the

optimal fire-support strategy problem) was extensively debated by experts. Some

analysis details are to be found in the classic book by Morse and Kimball (see pp. 73-77

See [23] for a discussion of the influences of political objectives on military
objectives for the evaluation of (time-sequential) combat strategies.

% See pp. 1-33 to 1-43 of 191 for a discussion of the d n ey elements of the fire-support
system for purposes of systems analysis.

%%tSee p38 for a brief discussion of the destynction between a "prioary" weapon system

(or infantry) and a "supporting" weapon system.
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of [21]). This problem was further studied at RAND in the late 1940's and early 1950's

(see [7]) and elsewhere (see [11). It would probably not be too far-fetched to say that

this problem stimulated early research on both dynamic programming (see [2]) and also

differential games (see [7], [12]). Today the problem of the determination of optimal

air-war strategies (another aspect of the fire-support problem) is being rather exten-

sively studied by a number of organizations (see, for example, [8], [16], [36]).

Thus, the objective of this investigation is to determine the sensitivity of the

optimal time-sequential fire-support policy to the functional form of the criterion

functional. Our research approach is to combine Lanchester-type models of warfare (see,

for example, [28]-[30] and references contained therein) with generalized control theory

(Le. optimization theory for dynamic systems). This general research program has been

described in more detail elsewhere [31], [32], It seems appropriate to examine sensi-

tivity of the optimal policy by considering a concrete problem. Consequently, our

research approach is to consider several different criterion functionals for the same

tactical situation involving a time-sequential allocation of supporting fires. The

tactical situation that we have chosen to examine is the "approach to contact" during

an assault on enemy defensive positions by friendly ground forces. We seek to determine

the "best" allocation for the supporting fires of the friendly forces. We will consider

a mathematically tractable version
tt 

of this problem so that we can make quantitative

comparisons among the optimal policies corresponding to the various criterion functionals.

Corresponding to each diflex.nt criterion functional is a different optimization (here

optimal control) problem. EecI, of these problems has been solved, and the corresponding

optimal fire-support policies will be contrasted.

In this paper four different criterion functionals are Lonsidered: it is shown

that both the difference and the ratio of military worths of friendly and enemy survivors

tThis term was apparently first coined by Y. C. Ho in [9] (see also [10]).

ttWeiss [38] has emphasized that a simplified model of a combat situation is par.icularly

valuable when it leads to a clearer understanding of significant relationshios which
would tend to be obscured in a more complex model.

2



(computed according to linear utilities) and also the ratio of the military worths

of friendly and enemy losses as criterion functionals may lead to exactly the same

optimal policy. A completely different optimal policy, however, is obtained for the

weighted average of force ratios of opposing infantry (at the time that the supporting

fires are lifted) as the criterion functional. We have decided that the three former

criterion functionals (i.e. the difference and the ratio of the military worths of

survivors and the ratic of the military worths of losses) are appropriate for an "attri-

tion" objective,
t 
whereas the weighted average of force ratios is appropriate for a

"breakthrough" objective.tt [In the latter case, the attacking force tries to overpower

the defenders at one place along a front and thtn pour reinforcements through the break

in the defender's defenses in order to "penetrate" behind the enemy lines and, for

example, disrupt enemy command, control, and communications.]

The body of this paper is organized in the following fashion. First, we review

previous work on the relationship between the quantification of military objectives

and the structure of optimal time-sequential fire-distribution policies in order to

place the work at hand in proper perspective. Then we describe the fire-support problem

and discuss the four criterion functionals that will be used to determine optimal fire-

support policies. Each of these criterion functionals represents a different quantifica-

tion of military objectives, and all appear to be reasonable criteria. Next, the

optimal time-sequential fire-support policies are described for the four problems. Thd

structures of the four optimal policies are then contrasted. Next, we justify the

optimization results that we have been discussing by sketching their development via

modern optimal control theory. This development is given for each of the four problems.

Finally, we discuss what we have learned from our investigation of the dependence of

the structure of optinal time-sequential fire-support policies on the quantificatiun

of military objectives.

tIn other words, the friendly forces seek an "overall" military advantage.

t In other words, the friendly forces seek a "local" military advantage.
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2. Previous Work on the Structure of Optimal Fire-Distribution Policies.

The only systematic examinations of the influences of the nature of the criterion

function on the structuret of optimal tine-sequential fire-distribution strategies

knon to the authors are those of Taylor [24]-[271, [31], [34], [35]. In [24]-[27]

and [11' a linear utility" was assumed for the military worth of the number of each

surviving w,.ar[on system type, and the criterion functional (payoff) was taken to be

the net military worth of suivivors (i.e. the difference between the military worths

if friendly and eneimy forces). Taylor (see [24]-[27] and [31]) has studied how the

optimal time-sequential fire-distribution policy depends on the assignment of these

linear utilities. In other words, he examined the sensitivity of the optimal t [me-

sequential combat policy to parametric variations in the assigned linear utilities

for survivors. It has been shown that the n-versus one fire-distribution problems

studied in [24]-[27] all have quite simple solutions when enewy survivors are valued

in direct proportion to their kill capabilities (as measured by their Lanchester attri-

tion-rate coefficients (see [28]-[29]) against the (homogeneous) fijendly forces).

Pugh and Mayberry [23] have suggested tf that an appropriate payoff, or objective

function (in our terminology, criterion functional), fcr the quantitative evaluation

of combat strategies is the loss ratio (calculated possibly using veighting factors for

heterogeneous forces). They have stated [23] that an "almost equivalent" criterion

is the loss difference. In this paper we will examine to what extent these criteria

In [25] and [31] the influences of the nature of the target-type attrition process on

the structure of optimal time-sequential fire-distribution policies are examined.

tt See [11] for methodology for the development of these linear utilities. Foi optimal

control/differential game combat optimization problcm , Lh wumpt.on of linear utilities

yields that the boundary conditions for thu adjoint %ariables '(at leit when no tei 0 tnai

state constraint is active) are independent of the values of the state vriables. Serinus

computational difficulties Lal arise when nonlinear utilities are asuiacd, The efectL

of assuming nonlinear utilities for military resurces upon the evaluation of tilmc-

sequential combat strategies has apparently never been studied.

tti However, Pugh .nd Mayberry [2.1 do not epliru thLe cnMieqlunqee of vii ie fenti:, ,.l

foims for the criterion functioral.
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are in fact equivalent. In combat problems with either no replacements or a fixed-length

planning horizon, it is readily seen that minimizing the loss difference is the same

as maximizing the difference in survivors. It is such a case of no replacements that

we will examine here. It remains to determine the "equivalence" of minimizing the loss

ratio to maximizing the ratio of survivors and to relate these results to those for

maximizing the difference in survivors.

Furthermore, for the evaluation of combat strategies it is of interest to consider

the military worth (i.e. utility of miltary resources) of survivors. In almost all
t

the work that has appeared in the open literature 
t 
a linear utility has been assumed

for valuation of survivors, and some form of net military worth (i.e. the difference

between the military worths of friendly and enemy survivors) has Leen taken as the pay-

off (i.e, criterion functional) (see, for example, [20], [24]-[27], [31]-[32], [35]).

One reason for assuming such linear utilities is that of mathematical tractability:

the boundary conditions for the dual variables do not depend on the state variable

values (at least when no terminal constraint involving the state variables is active).

The only study known to the authors of the consequences on nonlinear utilities

for survivors is contained in [34], where Kawara's supporting weapon system game [14]

is examined. Taylor [34] has determined (at least for the case in which the appropriate

side's (in Kawara's case, the defender) supporting weapon system is not annihilated)

the most general form of the crterion functional which leads to optimal fire-support

strdtegies being independent of force levels, and he has shown that the criterion

functional chosen by Kawara [14] is a special casp of this form. In other words, Taylor

has shown that Kawara's conclusion [14] that optimal fire-support strategies do not

The only exceptions known to the authors are the papers by Chattopadhyay [5] and

Kawara [14]. For example, in Kawara's paper [14] the payoff is the ratio of opposing
infantry strengths (measured in terms of total numbers) at the "end of battle" (see
also the differential game studied in Appendix D of (34]).

tA comprehensive review of pertinent literature published prior to 1973 in the field
of optimizing time-sequential tactical decisions (using Lanchester-type models of
warfare) is to be found in (32].
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depend on force levels only applies to problems with the special type of criterion

functional used by Kagara and is not true in general. No other examination of the

dependence of optimal combat strategies on combatant objectives is known to the authors.

3. Comparison of Optimal Fire-Support Policies.

In this section we give the fire-support allocation problem for which the

optimal policy is developed according to four different criterion functionals. These

time-sequential fire-support policies are then compared.

3.1. The Fire-Support Problem.

Let us consider the attack o. heterogeneous X forces against the static defense

of heterogeneous Y forces along a "front." Each side is composed of primary units

(or infantry) and fire-support units (or artillery). The X infantry (denoted as X1

and X2) launches an attack against the positions held by the Y infantry (denoted as

Y and Y2). We riy ccnsider X1 and X2 to be infantry units operating on spatially

separated pieces of terrain. We assume that the XI  infantry unit attacks the Y1

infantry unit aa imilarly for X2 and Y2 with no "crossfire" (e.g. the X1  infantiy

is not attrited by tl,e Y2  infantry). We will consider only the "appioach to contact"

phase of the battle. Thin ij the time from the initiation of the advance of the XI

and X2 forces towards the YI and Y2 defensive positions until the Xl and X2

forces actually make contact with the enemy infantry in "hand-to-hand" combat. It is

assumed that this time is fixed and known to X.

The Xi  forces begin thir advance igasnst the Yi forces from a distance and

move towards the Y. position. The ob3ective of the X. forces during the "appioach

to contact" is to close with the enemy position as rapidly as possible. Acco,dinglv,

small aras fire %) tic X forces is held at a minilnum -r firing is done "on the move"

to facilitate i pid nivwllent. It in not unr(aqonable,, therefore, to assuie that the

effectiveness of X fol ,,"on the inve" neg l'lble agai ,It Y i. We assume, however,

TIt may be shoiowa that stih , ii ii'ic\imat ion l ncesa;,.ry for rea on or iathemati al

tractabi ity in the fire-nuppoi t op, imalI control proll in to be I, bscqtIcitly gIVei 
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that the defensive Y fire (for i 1,2) causes attrition to the advancing Xi

forces in their "field of fire" at a rate proportional to only the number of Yi firers.

Let ai denote the constant of proportionality. It is convenient to refer to the

attrition of a target type as being a "square-law" process when the casualty rate is

proportional tc the number of enemy firers only and as being a "linear-law" process

when it is proportional to the product of the numbers of enemy firers and remainilg

targets (see [251-[27]). Brackney [3] has shown that a "square-law" attrition process

occurs 
t 
when the time to acquire targets is negligible in comparison with the time to

destroy them. He has pointed out that such a situation is to be expected to occur when

one force assaults another. Additionally, we assume that either the Y forces have

no fire-support units or their fire support is "organic" to the Y units (i.e. fire-

support units are integrated with Yi and only those with Y i support Y V

During the "approach to contact" tOe X fire-support units (denoted as W)

deliver "area fire" against the Yi forces. t Let 0 denote the fraction of the W

fire-support units which fire at YI" [We then have that h
+ 

02 = 1 and i k 0

for i = 1,2.] Then for constant there are a constant number of fire-sUPO-c

units firing at Yi' since we assume that the W fire-support units are not in the

combat zone and do not suffer attrition. In this case, the Yi attrition rate is

proportional to the Yi force level (see [37]; also (13]). Let ci denote the corre-

sponding constant of proportionality. This combat situation is shown diagrammatically

in Figure 1.

It is the objective of the X forces to utilize their fire-support units

(denoted as W) over time in such a manner so as to achieve the "most favorable" sitea-

tion at the end of the "approach to contact" at which time the force separations between

tTo be precise, one can only conjecture that such an attrition process probably occurs
under the stated conditions.

ttln other words, we assume that X's fire-support units fire into the (constant) area

containing the enemy's infantry without feedback as to the destructiveness of this
fire.



.............- '- . ~ r v - -'-

YY Infantry
2

COMBATa

ZONE a1 1 ~ 2 2 2

X I X 2 Infantry

Fire Support

w

Figure 1. Diagram of Fire-Support Problem Considered for

Examination of Effect of Criterion Functional

on Optimal Fire-Support Policy.
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opposing infantries are zero and artillery fires must be lifted from the enemy's

positions in order not to also kill friendly forces. The "outcome" of this phase of

battle may be measured in several different ways and is quantitatively expressed

through the criLerion functional (denoted as J). Thus, we have the following optimal

control prcolem for the determination of the optimal time-seqdential fire-support

allocation policy (denoted as **(t) for 0 2 t S T, where T denotes the time of

the end cf the "approach to contact") for the W fire-support units.

maximize J,

0ict)
with stopping rule: tf-T = 0,

dx.
subject to: dt = -iYi, (1)

(battle dynamics)
dyi
dt = -4iciYi fot i = 1,2,

with initial conditions:

xi(t=O) = xo and Yi(t=0) = yo for i = 1,2,

and

x1,x,,yl'y 2 k 0 (State Variable Inequality Constraints),

1 +2 0= 1 and 0 1 0 for i = 1,2 (Control Variable Inequality Constraints),

where

J denotes the criterion functional,

xi(t) denotes the number of X infantry at time t, similarly for Yi(t),

ai is a constant (Lanchester) attrition-rate coefficient (reflecting the
effectiveness of Y fire against Xi),

ci is a constant (Lanchester) attrition-rate coefficient (reflecting the
effectiveness of W supporting fires against Yi

) ,

tf (with numerical value T) denotes the end of the optimal control problem,
and

01 denotes the fraction of W fire support directed at Yi"



It will be convenient to consider the single control variable 4 defined by

fl~ so that f 2 = (1-f) and 0 1. (2)

For T < 4- it follows that yi(t) > 0 for 0 :r t r- T. Thus, the only state

variable inequality constraints (SVIC's) that must be considered ate x. 0. However,1

let us further assume that the attacker's infantry force levels are never reduced to

zero. This assumption may be militarily justified on the grounds that X would not

attack the Yi positions if his attacking Xi  forces could not survive the "approach

to contact."

3.2. The C.'iterion Furntionals Considered.

The four criterion functionals for which the optimal time-sequential fire-support

allocation policies will be compared are given in Table I. All are functions only of

the various numbers of combatants at the end of the planning horizon (i.e. at the end

of the "approach to contact" at which time the supporting fires must be lifted fo

safety reasons).

The criterion functional for Problem 1 (i.e. J l kx(T)/yT) represents

a weighted average of the force ratios of opposing numbers of infantry in the a,o

infantry combat zones. The rationale behind this choice is that in each combat area

(i.e. the area of combat between X, and Yi) cubat (possibly hand-to-hand) between

the Xi and Yi forces will follow the "approach to contact" and the (initial) force

ratio will be related to the outcome of this subsequent combat action. The weighting

factors (i.e. ak for k = 1,2) allow one to assign relative weights to this subse-

quent combat between Xi  and Y. in the two combat areas.

The criterion functional for Problem 2 (i.e. J= 2 l v~ T) .l Uk- kl K k

represents the difference between the mlhtary worths (compated using linear utilities)

of the surviving X and Y 1crees at the end of the "approach to contact." As noted

above in Section 2 we observe that ii,1Xim1 711ng thW dfferCnce in worth of survivals i

the same as minimizing te lo,- diff. renev in combat problemb (such as the one at hand)

10



Problem Criterion Functional, J

2
1 1, a kxk(i)Iyk (T)

k=1

2 2
2 1 v kxk(T) I ' kyk (T)

k=1 k=1

3 v k= kxk( wkyk(f

4 vk~ v(xk0x(T))}{ wk(k (T))}

TABLE 1.,

Summary of Problems Considered to Study
Effect of Criterion Functional on Optimal

Fire-Support Policy.



1*!

with no replacements.
t 

The criterion functional for Problem 3 (i.e. 33 =

vx2 1 wkyk(T) represents the ratio of total military worths of the

surviving X and Y forces, whereas tv'e one for Problem 4 (i.e. J4 =

_{12 v (x xk~x(T))}/{12 l wy~y(I))) represents the rjtio of military wcrths of

losses. Both the loss ratio and the loss difference have been proposed by Pugh and

Mayberry [23] as appropriate payoffs for the evaluation of combat s~rategies. They

state that (see p. 869 of [23]) "when the most straightforward esti-,nte of a weighting

factor for the loss difference is used, tie two criteria are almost equivalent." From

the study at hand, we will see that a similar statement is tiue: the two criteria are

equivalent for a certain "natural" valuation of forces (see next section), but other-

wise they may yield slightly different optimal time-sequential fire-support policies.

3.3. Optimal Fire-Support Policies.

In this section we give the optimal time seqaential fire-support policies for the

four problems stated in the previous section. In all cases we assume that neither of

the attacking infantry for,es can be reduced to a zero force level during the approach

to contact. 
t

t Under this condition the solutions 
I t | 

to the first three problems are

given in Table II with ancillary information on switching times being given in Table

III. The solution to Problem 4 is exactly like that to Problem 3 except that J3 in

Problem 3 is replaced by (-J4).

I-This result also holds for problems with a fixed-length planning horizon in which

rates of replacement are solely dependent on time (and not subject to control).

'tAs shown in Tables I and II, each of those problems corresponds to a different

criterion functional for the attackers.

ttInitial force levels and the known length of the appioceh to contact may be suffi-

clent to guarantee this, for a given set (or range of values) of Lanchester attrltion-
rate coefficients.

t-iFor a discussion of the distlnutioa between open-loop and clced-loop time-sequen-

tial pelIcios, see [31] or [351. For dctLmlnistih model', suh as tile ones undler

consideration,, the t-O type'; Ot poljc~c, are well known to be equivalent.
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Table II. Optimal Fire-Support Policies for the Three Problems.t

2
PROBLEM 1: 51- I kxk(T)/yk(T )

k-i

For 0 f t S T, optimal (open-loop) time-sequential fire-support policy is

1 for FI(rI,T) k o
**(t;r

0
,r2,T) 

0 for FI(rIT) S F2(r2,T) ,

where

and r 
T  

c cT
F (ro.T) - oii 1{[i[ ~)-4e 1  T}

2 2
PROBLEM 2: 32 " k (T) - k Ikyk(T)

and

PROBLEM 3: J3 - VkX(T) 
/  

! WkYk(T))
(1 kl,2

Nonrestrictive Assumption: wI/(alvl) :. w2 /(a2v2 )

Optimal (closed-loop) time-sequential fire-support policy is
PHASE I for 0 9t < t I - - I 2

1 for yl/Y2 > ac2v2/(aclCvl),

*(.,, = c2 (c +C2 ) for yl/Y2 a2c2v2/(alclv1 ),

0 for y1/Y2 < a2 c2v2/(alclV),,

PHASE I1 for T - TI / ff t T

1- 2

where TS for p
f  

O,

f  
f

1 Tf for PL 
<  

< 
0
S'

0 for p
f 
< L'

p- y
1

/Y
2 2 and L [3C2 v2  w2 ] 2  I

NOTES: tt

(1? s  is the unique nonnegativ, root of F(r-T) - 0.

(2) For PL < p < Of, T is the smaller of the two positive roots of

G(rr ;P
f
) - 0.

% is assumed that problem parameters and Initial force levels are such that

xi(T) > 0 for i - 1,2.

#tSee TablelII for the definitions of F(T) and G(r;p ). These functions arc

different for Problems : and 3.
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Table 111. Determination of the Switching Times T.3nd Tfor Problems 2 and 3.

Nonrestrictive Anssumption: w I (a Iv I) ;t w 2 a 2v2)

ff
TSis the unique nonnegative root of F(%.T5 - 0. Fcr PL < f < PSI T

Is the smaller of the two positive roots of G(r,t 4;P f 0.

It has been shown tha

(a) bounds on Tare given by 0 *. s
(b) Tie a strictly increasing function of P fo f

(c) there Is no root to G(-c-T,;P f 0 for P f'

2 2

E~IB~L F(T) - vT) - )ey~T

Gtc I a c1 I c +~ 1)~ a s 2v2

Bonson T. are given by:

(a) For w I (a iv 1 ) as 1/c1,

WI W2  - S3 L -( )

a I' 2v2 c1 , 211 '

(b) For 1/c1 I lR V)

c1  w2 w w 522

For PR0BLI 3: j -
t
k-l, vkxk(T) )/fk wkyk(T)]

F(T) -T + 3 1]e-1 1

f-( -1 a -t+I J I V ) w wf
a(TPcL~evj) f - 1  7

G c~ I c1  t 2 c 2 2  3 ( [- it-cv 2 Ja )1

Bounds on 'rare given by:

(a) For J3w,/(alv1 ) SI/c1 ,

J3(a~v -' '2)2 c I a 2v2 IWJW

(b) For I/c1 S J13 wl /(a v1),

I w w I wi w 2
1 1 d~v 22 ) ' 13 VI 2

Also 3r
-SO0

'3

14



Let us sketch here the proofs of a few s'atements made in Tables II and III.

The existence of a unique nonnegative root to F(T=' S ) = 0 tar w 1 al ) Z w2/(a2v2)

follows from F(x=O) z 0 and F'() > 0 V T Z 0. The existence of two positive roots

f f
to G =;) = 0 [here the second argument, p , is a (fixed) parameter] for

W/(a ) z w2/(a2v2 ) and fL <
f 
< f follows from G(T=0) > 0 for Pf > p, and

the fact that (letting r denote the unique value of T at which the global minimum

of the strictly convex function G(r) occurs) G(T=;p 
f) = F(_) < 0 for Pf < P.f

f ffThe latter is a consequence of aG/ap f 
> 0 and G(r=tS;p CPS) = F(t=r5 ) '- 0. It

should be noted that the fact that G' (T-;p
f) = 0 allows the parameter p to be

eliminated from G(r=r;p f). It also follows that there is no solution (i.e. value of

T to G(T=T ;p) 0 for pf > pf. The proof that aTS/aJ3 = -(3F/DJ 3)/(aF/3Ts) > 0

follows from Wa/T S > 0 and F/aJ3 < 0 (the latter holding since

{exp(-clT) -1+C I )>U).

We will now illustrate the structure of the optimal time-sequential fire-support

policies for the first three pioblems by considering some numerical examples. The

basic parameter set used in the numerical computations is shown in Table IV. Numerical

results have not been obtained for Problem 4 when w1/(alv1 ) > w2/(a2v2) because of

the difficulty in solving the associated to-point boundary-value problem. The struc-

ture of the optimal policy, however, is similar to that for Problems 2 and 3; although

switching times are, in general, very difficult to determine.

For Problem 1 it is convenient to introduce the "local" force ratiot ri = xi/Y i ,

which represents the ratio of the numbers of opposing infantry in each of the two

combat areas (see Figure 1). The optimal time sequential fire-support policy is most

conveniently expressed as an open-loop control in terms of the two initial force ratios,

denoted as ro = ri(t0 for i = 1,2, and the given length of time for the approach

to contact T. This optimal fire-support policy is graphically depicted in Figure 2.

In the initial force-ratio space, the line with equation

*tSee [30] for some Insights into the dynamics of combat from considering the force-

ratio equation.



TABLE IV.

Basic Parameter Set for Numerical Examples.

1 0.020 0.06 T = 30 minutes

2 0.015 0.05

Notes:

1. ai has units of [Xi casualties/{(mlnute) x (number of Yi).

2. ci has units of [Yg casualties/{(minute) x (number of Yi)}].
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Figure 2. Optimal (Open-Loop) Fire-Support

Policy for Problem 1.

r0

2 1W 20 2

0 for 0 t I. T

4.0-

3.0- 0= a a2 0or Y- r pia
2 a 1  1 2

2.0-

0 a20
1OFor r C.Ry -r -ia

2 a 1 2

*Ct) 1 for O~gt:T

/ 1.0 2.0 3.0 4.0 5.0 6.0 r

f

NOTES:

(1) R a aac/(a a~c)

(2) y fC2 feLl ]1[cl (c 2 T _-

(5 l c2 =1.0. See Table IV for other parameter values.
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r2 0 Ry - o Il-a2  (3)

where1

It2)

and eC)~l]

1J m L.2} {U (e'-1-c1 T)- c2 ~ 2T,

is a "dispersal line" (see (12], [24], or [31]) away from which all optimal battle

trajectories flow. This is shown in Figure 3, In constructing this figure, we have

f
used! facts like the following: when *=1 for 0 4 t :r T and r 2 = 0, then

I1 -c 1 r 2 /a 2

For Problems 2, 3, and 4, the optimal fire-support policy (expressed as a closed-

loop control (see f1l:J or [35])) is most conveniently expressed in terms of Y I/y 2

(i.e. the ratio of the numerical strengths of the two defending infantry forces) and

T-T- t (i.e. the "backwards" time or "time to go" in the approach to contact).

When enemy forces are valued in direct proportion to the rate at which they destroy

value of the friendly forces, i.e.

w i .ka vi for i =1,2, (5)

the optimal fire-support policy takes a particularly simple form (denoted as POLICY A):

POLICY A: For 0 :rt 4T

I ~ for y1 /Y2 > a 2c2v2/(alclvl),

c2/c+c) for y,/y a acv/(a c v), (6)

fry/y 2  ' 2c2v2/(acv)
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This is shown pictorially in Figure 4 in which optimal trajectories are traced backwards

in time. It is convenient to note that, for example, when *(T) = CONSTANT for

0 .x % a, we have

p(T) = Pf exp{[ Cl-(1-f)c2IT).

In this case, = 0 (see Table II), i.e. the entire approach to contact is "PHASE I."

When enemy forces are not valued in direct proportion to the rate ot which they

destroy value of the friendly forces (without loss of generality we may assume that

wI/(alv1 ) >w 2/(a2v2)), the solutions to Problems 2 and 3 are considerably more complex

as shown in Figure 5. As we see from Table II, the planning horizon may be considered

to consist of two phases (denoted as PHASE I and as PHASE II), e.ring each of which a

different fire-support allocation rule is optimal. We denote this overall optimal

policy as POLICY B (see Table II). During PHASE 1, POLICY A is optimal; whereas during

PHASE II, it is optimal to always concentrate all artillery fire on Y1  (which has

been valued disproportionately high).

The absence or presence of PHASE II itself in the optimal time-sequential fire-

support policy depends on the ratio of enemy infantry strengths p = yi/Y 2. For Problem

2 the length of PHASE II (i.e. TI) is independent of the final force levels of the
attacking friendly infantry units (i.e. xf and x2) and depends only on p = yl/Y2

and the combat effectiveness parameters (see equations (1)), whereas for Problem 3 the

length of PHASE II does depend directly on xf and x through the criterion functional

J . 2 VX/ 
2  

Wyfk. Thus, we see that T, may be quite different for Problems

3 k=l 'kit'kl/l l 'kk Ths1

2 and 3: for example, for the parameter set shown in Table IV (plus force utility

f f
values v1 =v2 = 15.0, w1 = 4.0, and w2 = 1.5 and terminal values xI f xf = 200.0

and y2 = 50.0), we have Ts (Problem 2) = 7.93 minutes, while Ts(Problem 3) = 11.37

minutes. [For computing Ts(Problem 3) by using F(T) shown in Table III, we have
f f~a~c2v2] f

used the fact that (yf)s = y2 -lJ exp(-clTS) to eliminate yf from J3.] Recalling

that aTS/ 3 > 0 (see Table III above) and observing that

2)



CASE for v /(a v) W /2 (a V2 )

1.00

2 1 0.75

0.25

30.0 24.0 18.0 12.0 6.0 1 0.0
(t-T)

Backwards Time, T (minutes)

NOTE: See Table IV for parameter values.

Figure 4. Diagram of Optimal (Closed-Loop) Fire-Support Policy

(POLICY A) for Problems 2, 3, and 4 when w I/(a v1)

w2 1/(a 2 v2).
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y1

CASE for w /(a V) > w /(a V )2

1.25

1.00

= /(c I+c2) \._NGIL U C-0.75

a2 2v2 \

- 0.50

0.25

30. '0 24.0 18.0 12.0 60 T .

Backwards Time, T (minutes) (t'=T)

NOTES: (1) p = yl/y2.

(2) See Table II for definitions of P L andP

(3) v 1 = v2 - 15.0, wi1 = 4.0, and w 2 -1.5. See Table IV for

other praimeter values.

Figure 5. Diagram of Optimal (Closed-Loop) Fire-Support Policy

(POLICY B) for Problem 2 when w I/(a iv1 ) > w 2/(a 2v2).

[The structure of the optimal fire-support policy is

similar for Problems 3 and 4.]
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[w1/(alv1 )]
lim Ts(Problem 3) = (1/c)tn ( [ 2/(a2v2) , 7)"
3-w.(

we see that for this parameter set the largest that Ts(Problem 3) may be is

lim T (Problem 3) = 11.55 minutes. Thus, for this parameter set T (Problem 2)
i S S

and T (Problem 3) may differ by at most fifty percent.

3.4. Discussion of Comparison.

In this section we will contrast the structure of the optimal time-sequential

fire-support policies for the four problems considered above. Let us recall that in

ff
all cases we have assumed that x1,X2 x 0.

For Problem 1 the optimal fire-support policy is to always concentrate all

artillery fire (i.e. supporting fires) on just one of the two opposing ene.y infantry

units. This policy will maximize the force ratio at the end of the approach to con-

ff
tact in one of the combat areas (i.e. xf/Yf) and may be considered to be a "break-

through" tactic. In other words, one concentrates all fire support on the key enemy

unit in order to overwhelm it and effect a penetration.

On the other hand, for Problems 2, 3, and 4 the optimal fire-support policy

may involve splitting of fires between the two enemy troop concentrations. This prop-

erty of the rolution has been anticipated in Taylor's earlier work on the optimal

control of "linear-law" Lanchester-type attrition processes [25], [26] (see also [34]).

We may consider this policy to be an "attrition" tactic which aims to wear down the

overall enemy strength. The structures of the optimal policies for Problems 2, 3,

and 4 are similar, although the switching times (i.e. T and TS) may be appreciably

different when enemy forces are not valued in direct proportion to the rate at which

they destroy value of the friendly forces. In such a case we mav assume without loss

of generality that

v I/(al1vlI) > w 2/(a 2v2). (8)

The functional dependences of these switching times are also different in Problems

2, 3, and 4. For Problem 2 the switching times (i.e. the ¢-transition surface) are

23



independent of the force levels of the attacking friendly forces (i.e. x, and x2),

as is the optimal policy itself. For Problem 3 the switching times depend (see Table

III) on the rato of military worths of surviving infantry forces (computed using

linear utilities), '.e. 33 = Ilk., vkxk(T)I/Ul=l wkyk(T)l. It has been shown (see

Section 3.3 above) that aTS !J 3 > 0 so that the larger that J3 becomes, the more

time that is spent concentrating fire on YI, although there is an upper limit to this

time (see (7)). Similar results hold for Problem 4, only with J3 replaced by (-J4).

For comparing the switching times between Problems 3 and 4, we note that J3 > (-J4)

if and only if J3 > 2 . kXK Ikl w Y"

The most significant thing to be noted in comparing the optimal fire-support

policies for these four problems is that the entire structure of the optimal policy

may be changed merely by changing the criterion functional. In particular, singular

subarcs (i.e. the splitting of W's fire between Y and Y2) do not appear in the

solution to Problem 1, even thoug , the necessary conditions for optimality on singular

subarcs are exactly the same in all four of these problems. Such singular subarcs are,

of course, part of the solution for Problems 2. 3, and 4.
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4. Development of Optimal Policy for Problem 1.

The optimal policy is developed by application of modern optimal control theory.
For Problem 1 it is convenient to introduce the force ratio in h thc

____n__ the i- combat zone

ri = x I yi. Then Problem 1 may be written as

2
maximize I er k () with T specified,

fi(t) k=l
dri'fri-I2 

9subject to: dt = a+ iciri o 12 9

fl +f 2=1, f 12:0 , and ri 1 O for i=l,2,

where we recall (2). We also recall that we have assumed that r i > 0.

4.1. Necessary Conditions of Optimality.

The Hamiltoniai. [4] is given by (using (2))

II 1(-a1+crl) X(-a2+(l-f)c r2) (10)

so that the maximum principle yields the extremal control law

where S Wr denotes the f-switching function defined by

S f(M) c 1 X1r I -c 2 X2 r 2 ' (12)

The adjoint system of equations (again using (2) for convenience) is given by

(assuming that r i(T) > 0)

icX 1  with X (T) = ai for i = 1,2. "13)

Computing the first two time derivatives of the switching function

~(0t= -a 1 c IX1 + a 2c2X 2 ' and Sf(t) =alc1 AX1I(c 1 f) - a 2 ' 2 X 2 (c 2 (1-0), (14)

t1we see that on a singular subarc we have (4], [15]

r 1/a r2/a' and ac1 =' X a 2c2 X2 ' (15)

tSe[26] for a further discussion.
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with singular control given by

#S c2/(c1+c2)
"  (16)

On such a singular subarc the generalized Legendre-Clebsch condition is satisfied,

since i-#= alC1 (c, +C2 ) > 0.

4.2. Synthesis of Extremals.

In synthesi-ing txtrealst by the usual backwards construction procedure (see,

for example, [24] or [26]) it is convenient to introduce the "backwards" time

defined by r = T- t. Rather than explicitly constructing extremals and determining

domains of controllability (see [24], [31], [35]), it is more convenient to show that

the return (i.e. value of the criterion functional) corresponding to certain extremals

dominates that from others. For this purpose it suffices to determine all possible

types of extremal policies as we will now do.

To this end, we write

S ( =0) = 2a2c2(Rrf/al-r2/a2), (17)

where

R = 1a Ic1 /(a2a2c2 ). (18)

Without loss generality we may assume that R k 1. Then by (14) we have

Sf (TffiO ) = Lll - a2a2c 2  0, (19)
oo

where S denotes the "backwards" time derivative $ = dS /dT. Considering (14)

we may write

(T) = 2a2c2(R(XI/a 0)- (2/a2)). (20)

It follows that S (r) > 0 and **(T) = 1 Vt > 0 when S (T=O) 0 for R > 1 (also

when S (T=O) > 0 for R = 1). We'also have S (T) < 0 and *kT) = 0 VT ; 0 when

S (T=0) < 0 for R = 1.

By an extremal we mean a trajectory on which the necessary condition. of optinality
are satisfied.
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There may be a change in the sign of S (T), however, when S(r=-0) < 0 for

R > 1. In this case **(r) =0 for 0 T rT 1 and then

S#(T) = a2a2e2{RrI(r)/a I - exp(c2r)r2(r)Ia2), (21)

where T denotes the smallest value of T such that Sf(T=T1 ) = 0. It is clear that

we must have 9f([=r1) 2 0. If S,(T=T ) > 0, then we have a transition surface,

and from (21) we find that

RrI(t1)/aI - exp(c 2T1 )r2 (t1 )/a2 = 0, (22)

where tI = T-T. From (20) we find that

0 9,r1 < (1/c2) InR. (23)

If 0(=T 0, the singular subarc may be entered, and then we have

T= (Wc 2 ) InR (24)

In this case we have
f f

r2 = Rrla2/a + F(R)a2/c2, (25)

f
where r = ri(t=T) and F(R) - 1+R(InR-l). We easily see that F(R) > 0 for

R > 1. When R = 1, we see that once the singular subarc is entered (in forwards

time), it is never exited by an extremal trajectory.

For the purposes of determining the optimal policy it suffices to consider

the following four extremal policies:

Policy 0: **(t) = 0 for 0 s t r T, (26)

Policy 1: =*(t) I for 0 9 t 9 T, (27)

Policy B-B: O*(t) = 1 1 for 0S t < T-T1  (28)

0 for T-T 1 : t f T,

where 0 t, < (1/c 2 )knR, andt

P c2/(c1+c2) for 0 9 t < T- 1 ,Policy S: *(t) = 1' (29)

0 fnr T-T 1  t 9 T,

tThe only extremal policies that are omitted here are those corresponding to extremals

which contain a singular subarc but rl/a i r2/a•
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where =, 1/ MR ad roa r/ It is readily seen from (17) that Policy 0

yields Rr f/a 2:rf/ etc. We also note that corresponding to the bang-bang policy1 1 r21 2 '

(28) we have

r (t) = fclro-a )cxp(c t )+ +a1)/c1

r (t ro-at 0.(30)
r2 t1) = 2  a2t1  0

4.3. Determisnation of the Optimal Fire-Support Policy.

As we have discussed elsewhere [25]--[271, [31], [351, the optimality of an

extremil trajectory may be proven via citing the appropriate existence theorem for an

optimal control; for the problem at hand there are two further subcases: (1) if the

extremal fs unique, then it is optimal, or (2) if the eXtLemal is not unique and only

a finite number exist, then the optimal trajectory is determined by considering the

finite number of corresponding values of the criterion functional. tThe existence of

a measurable optimal control followa by Corollary 2 on p. 262 of [17!. In Snctions

4.1 and 4.2 above, we have considered nc~essary conditions of optimality for piccuse

continuous controls (see p. 10 and pp. 20-21 of 1221). It remains to show thaL t.he

measurable optimal control say be taken to be pi2cewiso continuous. This assertion

may be proven by observing that if we consider the maxinum principle for measurable

controls~ (tsee p. 81 of [22]) in the backwards synithesis of extremals, tnen tile optimal

control may bc taken to be piecewise constant (and hience piecewise continuous).

f thas not been possible to establish the optin-mality of a policy by citing one of tile
many sets of sufficient conditions that arc available (iee [4], [26], [35]). In
particular, although the planning horizon for the problem at hand is of fixed Iength,
one cannot invoke thle sufficient conditions bascd on convexity of Hau.gasarian 118] or
Funk and Gilbert [6) because the right-hand sides of thle differential equations t9)
are not concave functions of r. and .

ttWe have taken thle liberty of changing the sign of the adjoint vector of Pontryagiln
et al. [22] (see p. 108 of ['4]). When the adinisqiblu tontrols are iieasuirable and
bounded, the Hlamil tonian (10) Only attains,, its maUXIMUlans lost ever-w.nere in time.

ftTli. asseLrtion follows fron' the con, ml variable apmearang 1 ineatly in the Ilmlti 5111

(10), the contiol variabic spacre bcing compat , and( thc ,witcii, fun Lion kl ') ii II,,

cootinuon,, for 0 " m T. Tile ma~imum print iIpe (ale- 1,111giilar runtL,o cklni hel t ols)
then yields, chat tile optimal control .,u-.t be pi remi so on tauit a I .DAt uver~wSic~, - in1C.

(coift. nextpa)
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We will now show that the optimal control must be constant.
t  

This is done by

showing that the returlus fron both Policy B-? R.. l aso Policy S for a given point in

the initial state space are cominated by the return corresponding to a constant extrenal

control. We denote the value of the criterion functional corresponding to Policy 0

as J0  that corresponding to Policy B-B as JB' etc. Then we have
0 0

Iro~ (ro~ FT 1
Jo 2  2  [a"-L exp(c 2 T) - +- 7 

(exp(c2 T) - Id (31)

*1 a alc l[ - expc 1 T)+ )- [e (ep(c1 T)-l)+ 7 . (32)

0 0

JB 2 L2  cexp(c[T + e xp(c2 3 )

R [exp(cl[T-l
1])- 1+e 1  1-- -+c2 [T-rI)exp(c 2 1)-]} , (33)

Sc2
and 0

S 22 a Kexp(KT)- Ti epK)l1RJs = aac2 [-ex(K) (R-B exp(KT)-1)

+ £1RinR+
4  

(R-1)]}, (34)

where a = c21(ci+c2), a+ B = 1, and K= c 1 c2 /(cI+c2 )
. It is convenient to

define AJ1-0 = JI-Jo, etc., and then
R'r ] [exp cT)-l l)

Ai~ ~ af cz oxp(c )- 1 cr1-0

[a2) exp c T -- " (exp(c 2T) - 1 - c2T , (35)

t
This was first conjectured by Professor Frank Faulkner, to whom the authors express

their thanks.

TtBy the principle of optimality (see [4]) it suffices for the purpose of showing
that a singular solution is always nonoptimal to consider a singular extremal which
begins with a singular subarc.

(cont. from page 19) S (t) can change sign at most once. Pence, it may be considered
to be piecewise constanJ (see p. 130 of [22]). [The authors wish to thank J. Wingate
of Naval Surface Weapons Center, White Oak for generously pointing out tnis type of
argument.]
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-; - P(.-zw T-)p [T - -* - --.-

0

&j1B Lta[. c1 [ J a1( (c T) - exp(cl[T-Tl1) -Cjr

-L)[e~ ~ 2 1 -.j (exp(cjrl) +c 2 [T--rljexp(c,r )- -c2 TI, (36) "

andt
0

1J-S 21 a . LI (R exp(c T)-1)- (R " 
exp(KT)-lJ

+ - ¢-Bexp (1T) -1 ) - [exp(cT)-l - - (7 (37)

We now state and prove Lema 1.

SLEMMA 1: Assume that T 2: T . if AJ 1_0 Zt 0, then AJ I B k 0.

PROOF: (a) We consider for t : TI

I 2 I cl 2) pl t..r1 2) -c2 (exp(ct) - exp(c.t-T 1)

a.[f~ 2e( c2 Tl 1 ~ (exp T r1 + C t-T ]exF(c T -lc t)}

Then AJ1-o 0 F(t= 1 ) 0.

(b) We compute tiat

F'(t) = R{exp(clt)-exp(cl[t-[]){ -L e2 (exp2
1 l ep- 1 t)}- (exp2(c2 '1)-1

(c) If c ro 9 a,, then dr /dt(t) 0 for 0 t S t1  so that (r/al)

> (rl(tl)/a1 ) T It follows that F'(t) k 0. If cr > a., then F'(t) > 0.

Thus, we always have F'(t) k 0 for t k T V

(d) By (a) and (c), we have F(t) . 0, whence follows the lemma. .E..

LEMMA 2: For t1 = T-T 1 aO, we have AJo B k 0 with AJo-B > 0

for t > 0.

In computing AJI S we assume that rl/a I  r2/a 2.

1 2 2*



PROOF: (a) We consider for t 0

Frt 1  =R[J[exP(c ti)l A (x~~ 1  1 ct)

+ exp~c~ 1) ([xp(ct)1 -A exct)--

F(b We co1t -ha F'( )1--c
a 1 1 1  ,2

~ w h 0 t

+'t1  exp(c ) f[LZJ ( exp c 2 1 --- (x~ 1 ) - lcx t

2 ~~Qt(ept)1 ) (epcrt 1  -1c 2 t 1 ) c 0,

Whe latser resat follows fro 0. 0 n '( ~0Vt~0

(r x(d)2 Ths (p t ) -10)). Co0nswene f22ollows , in thet lemaor .

THOE 1: For 0 >0 we have mxJ, 1  ihsrc

Te nex conide Lemm 3.ep ct

(EMM 3:alin (s3u that R o 1 an T k 1. e we have 0

PRO: (a) Wecside f or t 1 0, hneflostelma



F(t) tf(Rexp(ct) -1)/c 1 - (ReexpKt -l)/K)+R(R-exp(KT)-l-Kt/R)IK2

- R(exp(clt)-l-c 1T/R)/c2+ (Rfn R)/(cc) + (R-1)/c2.

Then we have

F(t=O) R(R--1)/K
2 + (R In R)/(c c2) + (R-l)/c2 = f(R) k 0,

with f(R) > 0 for R > 1. The latter result follows from f(R=l) - f'(R-l) = 0 and

f"(R) = (I-R-
8

)/(c 1 c 2 R) > 0 V R > 1.

(b) Computing F'(t) = -exp(Kt) 1 Rnt{exp(cIt)-exp(Kt)} > 0

for R a 1 and t > 0, we see from (a) that F(t;R) 2 0 with F(t;R) > 0 for R > 1.

(c) We now consider G(t) = {Rexp (c1t)-l)/c1 - {Reexp(Kt)-l/K. It follows

a -6that G(t=0) i/c2 +R/c 1 - R /K = g(R) 0, since g(R-1) = 0 and g'(R) = (l-R-)cl'

Also G'(t) RORaexp(cIt)-exp(Kt)) 2 0. Hence, O(t) k 0.

(d) Recalling that rl/a a T, we have by (c) that AJ a a a c F(T;R) ; 01 1 1-S 22 2

with F(T;R) > 0 for R > 1. Q.E.D.

From Lemma 3 follows Theorem 2.

THEOREM 2: Assume that R a 1 and T k " Then max(Jo'Jl) J
Swith inequality holding for R > 1.

Thus, we see from Theorems I and 2 that the optimal control must be constant

and equal to either 0 or 1 for 0 r t 9 T. The results shown in Table II and Figures

2 and 3 then follow from consideration of J_1-0  (see equation (35)).

5. Development of Optimal Policy for Problem 2.
2

2 In this case we consider (1) with the criterion function J2 = Vkxk(T) -

wkYk(T). Thus, for this problem the state space (considering time to be an
k=l

additional state variable) if five dimensional.

5.1. Necessary Conditions of Optimality.

The lamiltonian [2] is given by (using (2))



2
H p=,- y- PaYq 1 4lyl- q 2 ("~) 2 2  (38)

so that the maximum principle yields the extremal control law

I for S Wt > 0,
WO (39)

10 for S (t) < 0,A

where S (t) denotes the O-switching function defined byf f,(t = c I(-q,)yl- c2 (-q 2)y2. (40)

The adjoint system of equations (again using (2) for convenience) is given by (assuming

that x.(T) > 0)

Pi(t)=V i for 0 : t AT with i =1,2,

and (41)

= i with qi(T) =- for i = 1,2.

Computing the first two time derivatives of the switching function

W =) -a Iclvly 1 + a2c2v2y2, and %(tW = a lclvly1 (c I )- -a2c2v2y2 (c 2(1-0), (42)

we see that on a singular subarc we have [4], [15]

y/2.a 2c2v2 /(a 1 C. v), and (-ql)I(alv,) = (-q2)I/(a 2v2). (43)

with the singular control given by

S ' 2 /( I + 2).(44)

On auch a sinilar subarc the generalized Logendre-Clebsch condIition is satisfied, since

a d 2 _1'1 alcvll 0
dt2 LT~ acvy (cl+c 2) >0

For Problem I it was convenient to consider a "reduced" state space consisting

of t,r1  x I/y1 , and r 2 ' while for Problem 2 we are consideiing the "full" state

space of t, x, x2  y1 1 and y. It seems appropriate tc point out the correspond-

iog relation between the adjcint vatiables in these two state spz~es. This relation

is 2aaily been by considering the optimal return function (ace [4]), denoted as W,

and the following transformation of variables



t =t, and r xI/y, for i= 1,2. (45)

W WDri

Then we have, for example, p = = i  so that we obtain

Pi /Yi' and q= -rx i/Yi for i = 1,2. (46)

Let us also note that, alternatively, Problem I could have been solved in the "full"

state space of t, x., x2, Y,' and Y2; while Problem 2 cannot be solved in the

"reduced" state space. The latter conclusion follows from considering (41) and the

requirement [see (46) above] that pi /qi = -1/ri  must hold for the transforntion

(45) to be applicable.

5,2. Synthesis of Extremals.

In synthesizing extremals by the usual backwards construcLion procedure it is

convenient to consider
f

S ,(T=O) = a 2 c 2 v2 Y2 [a 1 a2 a 1  (47)
1 1 a2 c2v2 y2

and

S4 (T) = alclvly 1 -a 2c 2v2y2, (48)

where T denotes the "backwards" time defined by = T- t, and S denotes the

"backwards" time derivative = dS/dT. We omit most of the tedious details of ic

synthesis of extremals because of similarity to those in [26]. Without loss of eerr-

ality we may assume that (8) holds, and then there are two cases to be considered:

(I) wI/(alv)v = w2/(a2v2), and (II) wl/(alvl) > w2 /(a2v2).

CASE / __a i.e. wfor i"=i

In this case (46) becomes

S(-)=a f , y f / a Lf
(nO) =a 2c2v2y2(wl/(avl)) {,cv 1y/ (a2r2v2t2)- ]},

whence follows the synthesis of extremals shown in Figure 4.

CASE 1: w i / (aivi) 
-

2- 2)
"

f f f
Inl this case it fnolows froi (39), (47), and (48) thYIN fo p
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a 2 c2 v2 /(a l'v1) we have S() > 0 and *() 1 for all T > 0. Since S (T-0)

S0 S(T-0) < 0, it follows that for~~lcj we have S() < 0

ard **(r) - 0 for all T >- 0.

fThee may be a change in the sign of S (thowever, for c w (c wl) < 0

<a c v /(a c v1) In this case $*(T) = 1 for 0 Z T :r and then

2 2 2 1f 121
Saly) f (1 I iS T 52 2VY 2 -[exp~c 1 )-lI1---- P.T + )p -1 1  ~~~

It is clear that we must have S (T-T 3 9 0. if S,(r=1) 0, then we have a transi-

tion surface w'th T 1 (denoted as T) given by the smaller of the two positive roots

Of G(T=r.;P f) = 0, where G(T;p f) is given in Table III. If 9 f(rT-1) 0, a

singular subarc may be entered, and then we have that TI(denoted as Ts) is given

by the unique nonnegative root of F(T=T ) = 0, whore F(T) is given in Table 111.

We denote the corresponding value of p f sPf Then there is no switch in P' for

P >P 5f. We state this result as Theorem 3.

f fTHEOREM 3: **(i) = 1 for all T ;- 0 when p >PS.

f f f >
there is no solution to G(r=T ;p f) - 0 for p f> p. f.EILI

The bounds on TS shown in Table III are developed as follows. First assume

that w 1/(a~v1) I /c1I and consider F(T) = T +[l/C i-w/(a 1 v1 )exp(- 1 ) 0- (1/c, (

Then c w/(av) F'(-r) s: 1 and F'(T) k 0 for w /(aivl) 9: 1/c,, whence follow

the bounds shown in Table Ill. Other developments are similar.

The above information immediately leads to the extremal field show' in Figure 5

(seCe also Tables 11 and III).

5.3. Determination of the Optimal Fire-Support Polic'.

The optimality of the extresal fire-support policy developed above tollcws according

to the reasoning given in Section 4.3 by the uniqueness of extremals.
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6. Development of Optimal Policy for Problem 3.
2

2 In this case we consider (1) with the criterion functional J1 ={ vkx(T)}

/fk l wkAk(T).

6.1. Necessary Conditions of Optimality.

The necessary conditions of optimnality for Problem 3 are the same as those for

Problem 2 except that the boundary conditions for the adjoint variables are different.

Thus, (38) through (40) also apply to Problem 3. The adjoint system of equations (again

using (2) for convenience) is given by (assuming that x i(T) > 0)

pi W) v i/D for 0 :9 t 9 T with i = 1,2,

and (50)

a P cq with q,(T) =- w J /D for 1 1,2,

where D I Wkyk (T).
k1l

Computing the first two time derivatives of the switching function

S(t) m -a Ic lply 1+a 2 c2p2y2,2 and § 0 W = a lclply 1 (c 1 ) -a 2c2p2y2 (c2 (1-0Y), (51)

we find that (43) and (44) again hold on a singular subarc. On such a singular subarc

the generalized Legendre-Clebsch condition is satisfied, since _=d fl

a 1 c 1v1y(c 1+c2 )/D > 0.

6.2. Synthsis of lxtremals.

The synthesis of extiemals is essentially the same as for Problem 2 (see Section.

5.2 above) except that we have

=[Wj 33~~~~-L{a Ic lv Iy I w a2  w [ I /D, (52)

and

S0() (s1.rv~y1-a 2c2v2y2 )/D. (53)

it iollows that f

= ~ ~ _j 1JaCVY[vf(~ ) w2 1j

+- [alclvlyl(o) -a2c2v2y2(o')Idol/D. (54)
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6.3. Determination of the Optimal Fire-Suppor-t PlIka.

As for Problem 2, the optimality of the extreme1 fire-support policy developed

above follows according to the reasoning given in Section 4.3 by the uniqueness of

extrcmals.

7. Development of Optimal Policy for Problem 4.
2

In this case we consider (1) with the criterion funct-onal J= 4 vl,xk-xk(T)] /
2 k=l

. wk[y°-yk(T)] . The necessary conditions of optimality for Problem 4 are the same

as those for Problems 2 and 3, except that the boundary conditions for the adjoirt

variables are different: at t = T we have

Pi(T) = vi/D I  and qi(T) = -wi(-J4)/D1  for i = 1,2, (55)

2
where D1 = k[Yk-Yk(T ) ). Consequently, the solution to Problem 4 is exactly the

k=l
same as that to Problem 3, except that J3 in the solution to Problem 3 is replaced

by (-J ). Because of the dependence of J on the initial force levels >o,y i for

i = 1,2, the two-point boundary-value problem which arises in the determination of

switching times when (8) holds is very difficult to solve.

8. Discussion.

!n this section we discuss what we l,,ve learned about the dependenc-e of the

structure of optimal time-sequential fire-support policies on the quantification of

military objectives. We studied this dependence by considering four specific p-oblews

(each corresponding to a different quantification of objectives, i.e. criteriun func-

tional) for which solutions were developed by modern optimal control theory.

Our most significant finding is that essentially the entire structure of the

optimal time-sequential fire-support polic) may be changed by modifying time qunntif.-

cation of military objectives. We feel that there are basically two typ,:s of military

stratcgies: (1) obtain a "local" advantage, and (?) obtain u "overall" advamt ,c.

The criterion luCltioital for Problem I (i.e. , cc kk( T k (T), a woeghl Ine

k3
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of the final force ratios in the two separate combat areas) reflects the striving to

:;tain a "local" advantage (referred to above as a "breakthrough" tactic). The corre-

sponding optimal fire-support policy was to concentrate all supporting fires on one

of the enemy units (the quantitative determination of this policy is given ir Table II)

for the entire period of fire support.
t

On the other hand, the criterion functionals for Problems 2, 3, and 4 reflect

the striving to attain an "overall" advantage (referred to above as an "attrition" tactic

which aims to wear down the overall enemy strength). The corresponding optimal time-

sequential fire-support policies for Problems 2, 3, and 4 were qualitatively the same

and could involve a splitting of supporting fires between the two enemy troop concen-

trations. This property of the optimal fire-distribution policy is not present in the

solution to Problem 1 and was anticilated by our earlier work on optimal fire distri-

bution against enemy target types which undergo attrition according to a "linear-law"

process (see Section 3.1 above) [25], (26]. The criterion functional for this earlier

Vork was the difference between the overall military worths of frfendly and enemy sur-

vivors. Thus, we see that nonconcentration of fires on particuler target types is

characteristic of optimal time-sequential fire distribution over enemy target types

which undergo attrition according to a "linear-law" process with the objective of

attaining an "overall" advantage.

We have assumed that the X commander has perfect information about the state
variables (e.g. enemy force levels) and all Lanchester attrition-rate coefficients
(i.e. system parameters). In the real world where this assumi)tion may not hold, this
policy need not be optimal. Other factors that would temper the use of such a policy
in the real world aro (1) the need to "pin down" enemy forces with supporting fires
(i.e. suppressive effects), and (2) the giving of information to the enemy as to
exactly where his defenses will be attacked by the concentration of preparatory fires
only there.

We recall that J2 = I vkxk (T) kl1 wkYk(T), the difference between overall

military worths (computed assuming linear utilities) of friendly and ene'y forces at

the time when supporting fires must be lifted; J3
= 
Y= vkXk(T))/{12 w1 Y

e 1 3 2 ko =
the ratio of overall military worths; and J4 = -{k , Vktxk Xk(T))/{ kl wk[yk-yk(T)]f,

the ratio of the military worths of friendly and enemy losses.



for Problems 2, 3, and 4 were qualitatively similar. In fact, when one (i.e. the X

commander) values enemy (i.e. Y) forces in each of the two combat zones in direct pro-

portion to their rate (per unit of individual weapon system) of destroying the value

of opposing friendly forces, the optimal policies were exactly the same for all three

problems (see Table II). In this case the optimal fire-support policy took the par-

ticularly simple form of Policy A as given by (6).

When enemy survivors were not valued in direct proportion to their rate of

destruction of friendly value, the optimal policies were different and more complex

(see Tables II and III; aiso Figure 5), and the planning horizon may be considered to

be divided into two phases, denoted as PHASE I and PHASE II. The lengths of these two

phases depended on different factors in these three pr.blems, and the timing of changes

in the allocation of supporting fires could be appreciably different. When the

planning objective was the maximization of the difference in the to . military worths

of friendly and enemy forces at the end of the "approach to contacc," the length of,

for example, PHASE II (during which all fire is concentrated on YI) depended only on

the attrition-rate coefficients and enemy force levels and was independent of the

friendly attacking-force levels. When the ratio of the total wcrths of survivinp friendly

and enemy forces was considered (i.e. for Problem 3), the length of PHASE 11 also depended

directly on the attacking friendly force levels; while when the ratio of the total worths

of friendly and enemy losses was considered, it also depended on the Initial total

worths of forces.

Thus, we see that (at least for the relatively simple fire-support allocation

problem considered here) the structure of the optimal time-sequential allocation policy

may I strongly Lnfluenced by the quantification of military objectives. Moreover, the

most important planning decision apparently is whether a side will seek to attain an

3



"overall" advantage or a "local" advantage. We hope that our investigation has provided

a better understanding of the dependence of the structure of optimal time-sequential

fire-support strategies on combatant objectives. In conclusion, it appears to u&

that more such specific cases warrant investigation for developing a theory of optimal'

combat strategies.
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